Chris Wright, MD, PhD, on Anelloviruses, a Potential Alternative to AAV for Gene Therapy

Commentary
Video

The chief medical officer and head of translational research at Ring Therapeutics discussed research presented at ASGCT 2024.

“We were looking in the body for different viruses that are persisting there, but not causing any problems. So, we did find a number of viruses, the anelloviruses. Anelloviruses actually make up about 80% of all the viruses in a person's body. And it turns out that that they've been there throughout all of the person's life, pretty much shortly after birth. So, they persist for a long period of time, and they don't appear to cause any problems, they don't induce an immune reaction, and they don't seem to have any associations with diseases. So, we thought that could be a great virus to use to try to deliver gene therapy, because it should be a safe approach.”

Ring Therapeutics is developing anellovectors as potential alternatives to adeno-associated virus (AAV) gene therapies. AAV therapies, although currently the standard for gene therapies and an approved modality, have inherent challenges, including immune responses and lack of redosability. Anelloviruses, found naturally in the human body, have potential to address these challenges for gene therapies.

Ring presented data from multiple studies on anelloviruses at the American Society of Gene & Cell Therapy (ASGCT) 27th Annual Meeting, held May 7 to 10, 2024, in Baltimore, Maryland. CGTLive spoke with Chris Wright, MD, PhD, chief medical officer and head, translational research, Ring Therapeutics, to learn more about anelloviruses and the data presented at ASGCT. He overviewed the outstanding issues with AAV therapies and how anelloviruses may address these challenges. He also outlined the different research presented at the meeting, including demonstrating a large payload with anelloviruses, demonstrating transduction in the eye in nonhuman primates, and demonstrating redosability without issue.

REFERENCE
Bounoutas GS, Pozsgai R, Gold I, et al. Anellovectors, a Gene Delivery Platform Based on Commensal Human Anelloviruses, Have the Potential to Evade the Immune System and Deliver DNA Payloads to a Broad Range of Tissues in a Redosable Manner. Presented at: ASGCT 27th Annual Meeting, May 7-10; Baltimore, Maryland. Abstract #203
Recent Videos
David Porter, MD, the director of cell therapy and transplant at Penn Medicine
Georg Schett, MD, vice president research and chair of internal medicine at the University of Erlangen – Nuremberg
Manali Kamdar, MD, the associate professor of medicine–hematology and clinical director of lymphoma services at the University of Colorado
Manali Kamdar, MD, the associate professor of medicine–hematology and clinical director of lymphoma services at the University of Colorado
Ben Samelson-Jones, MD, PhD, assistant professor pediatric hematology, Perelman School of Medicine, University of Pennsylvania and Associate Director, Clinical In Vivo Gene Therapy, Children’s Hospital of Philadelphia
Manali Kamdar, MD, the associate professor of medicine–hematology and clinical director of lymphoma services at the University of Colorado
Steven W. Pipe, MD, a professor of pediatric hematology/oncology at CS Mott Children’s Hospital
Haydar Frangoul, MD, the medical director of pediatric hematology/oncology at Sarah Cannon Research Institute and Pediatric Transplant and Cellular Therapy Program at TriStar Centennial
David Barrett, JD, the chief executive officer of ASGCT
Related Content
© 2025 MJH Life Sciences

All rights reserved.