Chris Wright, MD, PhD, on Anelloviruses, a Potential Alternative to AAV for Gene Therapy

Commentary
Video

The chief medical officer and head of translational research at Ring Therapeutics discussed research presented at ASGCT 2024.

“We were looking in the body for different viruses that are persisting there, but not causing any problems. So, we did find a number of viruses, the anelloviruses. Anelloviruses actually make up about 80% of all the viruses in a person's body. And it turns out that that they've been there throughout all of the person's life, pretty much shortly after birth. So, they persist for a long period of time, and they don't appear to cause any problems, they don't induce an immune reaction, and they don't seem to have any associations with diseases. So, we thought that could be a great virus to use to try to deliver gene therapy, because it should be a safe approach.”

Ring Therapeutics is developing anellovectors as potential alternatives to adeno-associated virus (AAV) gene therapies. AAV therapies, although currently the standard for gene therapies and an approved modality, have inherent challenges, including immune responses and lack of redosability. Anelloviruses, found naturally in the human body, have potential to address these challenges for gene therapies.

Ring presented data from multiple studies on anelloviruses at the American Society of Gene & Cell Therapy (ASGCT) 27th Annual Meeting, held May 7 to 10, 2024, in Baltimore, Maryland. CGTLive spoke with Chris Wright, MD, PhD, chief medical officer and head, translational research, Ring Therapeutics, to learn more about anelloviruses and the data presented at ASGCT. He overviewed the outstanding issues with AAV therapies and how anelloviruses may address these challenges. He also outlined the different research presented at the meeting, including demonstrating a large payload with anelloviruses, demonstrating transduction in the eye in nonhuman primates, and demonstrating redosability without issue.

REFERENCE
Bounoutas GS, Pozsgai R, Gold I, et al. Anellovectors, a Gene Delivery Platform Based on Commensal Human Anelloviruses, Have the Potential to Evade the Immune System and Deliver DNA Payloads to a Broad Range of Tissues in a Redosable Manner. Presented at: ASGCT 27th Annual Meeting, May 7-10; Baltimore, Maryland. Abstract #203
Recent Videos
Michael Flanagan, PhD, chief scientific officer at Avidity
David Barrett, JD, the chief executive officer of ASGCT
David-Alexandre C. Gros, MD, Eledon’s chief executive officer
David Barrett, JD, the chief executive officer of ASGCT
Alfred L. Garfall, MD, MS, associate professor of medicine (hematology-oncology) and director, Autologous Hematopoietic Cell Transplantation, Cell Therapy and Transplant Program, Hospital of the University of Pennsylvania; and section chief, Multiple Myeloma, Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania,
Reena Sharma, MD, an adult metabolic consultant at Salford Royal Hospital
Nirav Shah, MD, MSHP, associate professor of medicine, at the Medical College of Wisconsin
Bhagirathbhai R. Dholaria, MD, an associate professor of medicine in malignant hematology & stem cell transplantation at Vanderbilt University Medical Center
Reena Sharma, MD, an adult metabolic consultant at Salford Royal Hospital
Mark Hamilton, MD, PhD, a hematology-oncology and bone marrow transplant (BMT) cell therapy fellow at Stanford University
Related Content
© 2025 MJH Life Sciences

All rights reserved.