John Brandsema, MD, on Potential Upcoming Treatments for Duchenne Muscular Dystrophy

Commentary
Video

The pediatric neurologist in the Division of Neurology at Children’s Hospital of Philadelphia discussed several still-investigational drugs and therapies for DMD.

“The bottom line is that we don't think that we are done at all in terms of the approach to this disease. There's much work still to be done in optimizing care and many research trials ongoing because we want to do the best we can for impacting this disease.”

A seminal moment for the treatment of Duchenne muscular dystrophy (DMD) occurred in June 2023 when the FDA approved Sarepta Therapeutics’ delandistrogene moxeparvovec-rokl (marketed as Elevidys), an adeno-associated virus (AAV) vector-based gene therapy, for use in the treatment of the disorder. Although an important step forward that gets at the root cause of the disease, it is not a perfect treatment nor is it curative. As such, many companies and academic institutions are continuing to develop and evaluate new investigational products for DMD that may help to provide better efficacy and safety for some patients, or otherwise address remaining needs that are unmet by Elevidys.

CGTLive® recently asked John Brandsema, MD, a pediatric neurologist in the Division of Neurology at Children’s Hospital of Philadelphia, whether there are any noteworthy therapeutic candidates for DMD still in development now that may be promising for the future. Brandsema discussed the potential of several new exon-skipping therapies, small molecule drugs like sevasemten, mesenchymal stem cell therapies, and new gene transfer approaches that encode different versions of microdystrophin and/or different AAV capsids. In particular, he noted that these alternative gene transfer therapies may allow for the treatment of patients who would not be eligible to receive Elevidys.

In addition, Brandsema spoke about the importance of establishing standardized newborn screening practices for DMD. He stressed that such practices are useful because earlier treatment, before the disease has caused much deterioration of muscle, is more likely to provide better outcomes. Although, he also pointed out that the optimal timing for different treatments and/or combination therapies is not yet known and more observation is needed.

Newsletter

Stay at the forefront of cutting-edge science with CGT—your direct line to expert insights, breakthrough data, and real-time coverage of the latest advancements in cell and gene therapy.

Recent Videos
Derek Jackson, BS, MA, the vice president of cell & gene therapy product development at Pacira, and Kilian Guse, PhD, the vice president of genetic medicine platforms at Pacira
Derek Jackson, BS, MA, the vice president of cell & gene therapy product development at Pacira
Jeffrey Chamberlain, PhD
Tami John, MD
Tami John, MD
Tami John, MD
Matthew Ku, MBBS, FRACP, RACP, FRCPA/RCPA, PhD, an associate professor and the lymphoma stream lead at St Vincent’s Hospital
Saurabh Dahiya, MD, FACP, an associate professor of medicine at Stanford University School of Medicine; as well as clinical director of Cancer Cell Therapy in the Division of Blood and Marrow Transplantation and Cell Therapy at Stanford Medicine
Shahzad Raza, MD, a hematologist/oncologist at the Cleveland Clinic
Manali Kamdar, MD, the associate professor of medicine–hematology and clinical director of lymphoma services at the University of Colorado
Related Content
© 2025 MJH Life Sciences

All rights reserved.